Examples
Initialize HiGHS
HiGHS must be initialized before making calls to the HiGHS Python library, and the examples below assume that it has been done
import highspy
import numpy as np
h = highspy.Highs()
Read a model
To read a model into HiGHS from a MPS files and (CPLEX) LP files pass the file name to readModel
.
# Read a model from MPS file model.mps
filename = 'model.mps'
status = h.readModel(filename)
print('Reading model file ', filename, ' returns a status of ', status)
filename = 'model.dat'
status = h.readModel(filename)
print('Reading model file ', filename, ' returns a status of ', status)
Build a model
Build the model
minimize f = x0 + x1
subject to x1 <= 7
5 <= x0 + 2x1 <= 15
6 <= 3x0 + 2x1
0 <= x0 <= 4; 1 <= x1
Using the simplified interface, the model can be built as follows:
x0 = h.addVariable(lb = 0, ub = 4)
x1 = h.addVariable(lb = 1, ub = 7)
h.addConstr(5 <= x0 + 2*x1 <= 15)
h.addConstr(6 <= 3*x0 + 2*x1)
h.minimize(x0 + x1)
Alternatively, the model can be built using the more general interface, which allows the user to specify the model in a more flexible way.
Firstly, one variable at a time, via a sequence of calls to addVar
and addRow
:s
inf = highspy.kHighsInf
# Define two variables, first using identifiers for the bound values,
# and then using constants
lower = 0
upper = 4
h.addVar(lower, upper)
h.addVar(1, inf)
# Define the objective coefficients (costs) of the two variables,
# identifying the variable by index, and changing its cost from the
# default value of zero
cost = 1
h.changeColCost(0, cost)
h.changeColCost(1, 1)
# Define constraints for the model
#
# The first constraint (x1<=7) has only one nonzero coefficient,
# identified by variable index 1 and value 1
num_nz = 1
index = 1
value = 1
h.addRow(-inf, 7, num_nz, index, value)
# The second constraint (5 <= x0 + 2x1 <= 15) has two nonzero
# coefficients, so arrays of indices and values are required
num_nz = 2
index = np.array([0, 1])
value = np.array([1, 2])
h.addRow(5, 15, num_nz, index, value)
# The final constraint (6 <= 3x0 + 2x1) has the same indices but
# different values
num_nz = 2
value = np.array([3, 2])
h.addRow(6, inf, num_nz, index, value)
# Access LP
lp = h.getLp()
num_nz = h.getNumNz()
print('LP has ', lp.num_col_, ' columns', lp.num_row_, ' rows and ', num_nz, ' nonzeros')
Alternatively, via calls to addCols
and addRows
.
inf = highspy.kHighsInf
# The constraint matrix is defined with the rows below, but parameters
# for an empty (column-wise) matrix must be passed
cost = np.array([1, 1], dtype=np.double)
lower = np.array([0, 1], dtype=np.double)
upper = np.array([4, inf], dtype=np.double)
num_nz = 0
start = 0
index = 0
value = 0
h.addCols(2, cost, lower, upper, num_nz, start, index, value)
# Add the rows, with the constraint matrix row-wise
lower = np.array([-inf, 5, 6], dtype=np.double)
upper = np.array([7, 15, inf], dtype=np.double)
num_nz = 5
start = np.array([0, 1, 3])
index = np.array([1, 0, 1, 0, 1])
value = np.array([1, 1, 2, 3, 2], dtype=np.double)
h.addRows(3, lower, upper, num_nz, start, index, value)
passColName
passRowName
Pass a model
Pass a model from a HighsLp instance
inf = highspy.kHighsInf
# Define a HighsLp instance
lp = highspy.HighsLp()
lp.num_col_ = 2;
lp.num_row_ = 3;
lp.col_cost_ = np.array([1, 1], dtype=np.double)
lp.col_lower_ = np.array([0, 1], dtype=np.double)
lp.col_upper_ = np.array([4, inf], dtype=np.double)
lp.row_lower_ = np.array([-inf, 5, 6], dtype=np.double)
lp.row_upper_ = np.array([7, 15, inf], dtype=np.double)
# In a HighsLp instsance, the number of nonzeros is given by a fictitious final start
lp.a_matrix_.start_ = np.array([0, 2, 5])
lp.a_matrix_.index_ = np.array([1, 2, 0, 1, 2])
lp.a_matrix_.value_ = np.array([1, 3, 1, 2, 2], dtype=np.double)
h.passModel(lp)
Solve the model
The incumbent model in HiGHS is solved by calling
h.run()
Print solution information
solution = h.getSolution()
basis = h.getBasis()
info = h.getInfo()
model_status = h.getModelStatus()
print('Model status = ', h.modelStatusToString(model_status))
print()
print('Optimal objective = ', info.objective_function_value)
print('Iteration count = ', info.simplex_iteration_count)
print('Primal solution status = ', h.solutionStatusToString(info.primal_solution_status))
print('Dual solution status = ', h.solutionStatusToString(info.dual_solution_status))
print('Basis validity = ', h.basisValidityToString(info.basis_validity))
The following are markers for documentation that has yet to be added
Extract results
getModelStatus
getInfo
getSolution
getBasis
getObjectiveValue
getDualObjectiveValue
Report results
writeSolution
Option values
setOptionValue
getOptionValue
Get model data
getNumCol
getNumRow
getNumNz
getCol
getRow
getColEntries
getRowEntries
getCols
getRows
getColsEntries
getRowsEntries
getColName
getColByName
getRowName
getRowByName
getCoeff
Modify model data
EnsureColwise
EnsureRowwise
changeObjectiveSense
changeColCost
changeColBounds
changeRowBounds
changeColsCost
changeColsBounds
changeRowsBounds
changeCoeff
Set solution
setSolution
Set basis
setBasis
Presolve/postsolve
presolve
getPresolvedLp
getPresolvedModel
getPresolveLog
getPresolveOrigColsIndex
getPresolveOrigRowsIndex
getModelPresolveStatus
writePresolvedModel
presolveStatusToString
presolveRuleTypeToString
postsolve
Basis solves and tableau calculation
getBasicVariables
getBasisInverseRow
getBasisInverseRowSparse
getBasisInverseCol
getBasisInverseColSparse
getBasisSolve
getBasisSolveSparse
getBasisTransposeSolve
getBasisTransposeSolveSparse
getReducedRow
getReducedRowSparse
getReducedColumn
getReducedColumnSparse
Rays and unboundedness
getDualRayExist
getDualRay
getDualUnboundednessDirectionExist
getDualUnboundednessDirection
getPrimalRayExist
getPrimalRay
Multi-objective optimization
addLinearObjective
clearLinearObjectives